On the Use of Absolute Threshold of Hearing-based Loss
for Full-band Speech Enhancement

Rohith Mars and Rohan Kumar Das

Fortemedia Singapore, Singapore

{rohithmars, rohankd}@fortemedia.com

Abstract

In this paper, we investigate the use of a perceptually moti-
vated loss function for training single-channel full-band speech
enhancement models. Specifically, we modify the conven-
tional squared error loss function by incorporating the use of
a frequency-importance based weighting scheme utilizing ab-
solute threshold of hearing (ATH). We placed more emphasis
on the perceptually relevant frequency bins of the speech spec-
trogram by applying larger weights to train the speech enhance-
ment model targeting for a higher perceptual quality. We com-
pare the models trained using both the conventional loss and
the loss utilizing the proposed ATH-based weighting scheme
on the VCTK and 4" DNS challenge datasets. The results
demonstrate that the proposed loss using ATH-based weight-
ing scheme achieves better performance than the conventional
loss in terms of multiple objective speech quality metrics.

Index Terms: speech enhancement, deep neural networks, ab-
solute threshold of hearing.

1. Introduction

For several decades, single-channel speech enhancement has
remained one of the most important and challenging topics in
audio signal processing. Given a noisy speech as input, the
objective of a speech enhancement system is to process the
noisy speech such that the listening quality and intelligibility
of the speech is enhanced [1,2]. Speech enhancement modules
find many applications in automatic speech recognition (ASR)
systems, audio/video communication and assistive listening de-
vices to improve their performance under noisy and reverber-
ant environments. In practical scenarios, the task of speech
enhancement under low signal-to-noise ratio (SNR) conditions,
room reverberations and in presence of non-stationary/transient
noise is very challenging.

In the past, several approaches have been employed to ad-
dress single-channel speech enhancement. The classical meth-
ods include the approaches that make use of some form of
noise spectral estimation such as spectral subtraction [3], mini-
mum mean square error short-time spectral amplitude (MMSE-
STSA) [4] and sub-space methods [5]. With the advent of
data-driven approaches, the deep learning techniques are now
pre-dominantly applied for speech enhancement. A majority of
such methods treat speech enhancement as a supervised learn-
ing problem [6]. Together with the development of modern neu-
ral network model architectures, these approaches have signif-
icantly helped to improve the performance of speech enhance-
ment algorithms.

It is well-established that speech enhancement models
can be trained either in the time-domain or in the time-
frequency (TF) domain. Processing in time-domain has the ad-
vantage that it eliminates the requirement for explicit phase es-
timation. In contrast, phase estimation of the enhanced speech
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along with the magnitude spectrum is necessary for process-
ing in TF domain. To begin with, magnitude spectrum of the
enhanced speech or the TF mask to be applied on the noisy
magnitude spectrum was estimated with the phase taken directly
from the noisy signal for signal reconstruction [7, 8]. However,
in [9-11], it was shown that phase reconstruction plays a crucial
part in speech intelligibility, which subsequently led to the de-
velopment and use of phase sensitive mask (PSM) and complex
ratio mask (CRM) [12, 13].

Generally, deep learning-based models for speech enhance-
ment consist of a neural network model trained on a given loss
function. The performance of such models often scale with the
model size. However, a prohibitively large model size has lim-
ited application for real-time inference. In contrast, for a given
model size, performance gain can be achieved by choosing the
optimal loss function used for the model training. In addition,
the model inference time is independent of the choice of loss
function since it is computed only during the training phase. As
such, there has been several studies on the choice of loss func-
tion used for training speech enhancement models both in the
time-domain and TF domain [14-16].

One of the most commonly used loss function for super-
vised speech enhancement in the TF domain is the squared error
between the enhanced and the clean speech spectrum. Applying
a conventional squared error loss would treat all the frequency
bins of the spectrum equally during model training. However, it
is well-known from psychoacoustics that all the frequency bins
are not equally perceptually important [17,18]. This is particu-
larly more important when training a full-band speech enhance-
ment model due to the large bandwidth involved, with varying
perceptual relevance. Hence, it would be advantageous if the
model emphasizes more on the perceptually relevant frequency
bins by replacing the squared loss with a weighted squared loss
which incorporates frequency importance.

In [19], the use of weighted squared loss based on abso-
lute threshold of hearing (ATH) [20] for speech enhancement
using deep neural networks was explored. It utilized simple
multi-layer feed-forward neural networks to perform enhance-
ment on wide-band speech signals. It was also reported that use
of such ATH-weighted loss only provided better performance
under low SNR conditions. In this work, we re-examine and fur-
ther explore the use of ATH-weighted loss for training modern
neural network architectures utilized for speech enhancement.
In addition, we extend the use of ATH weighting from wide-
band to full-band speech signals along with ablation studies to
investigate the performance achieved by using ATH-weighted
loss under a wide range of SNR conditions.

The rest of the paper is organized as follows. Section 2
discusses the signal model. In Section 3, we present the ATH-
based loss function. The details of the experiments and the re-
sults are discussed in Section 4 and Section 5, respectively. Fi-
nally, the paper is concluded in Section 6.
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Figure 1: ATH corresponding to frequencies upto 24000 Hz.

2. Signal Model

The time-domain noisy speech signal x(¢) received by a micro-
phone can be expressed as

z(t) = 5(t) * h(t) + n(t), (1

where ¢ represents the sample index, s(t) denotes the clean
speech, h(t) corresponds to the impulse response from the
speech source to the microphone in the presence of the addi-
tive background noise n(t) with * denoting the convolution op-
eration. Using the short-time Fourier transform (STFT), these
signals can be converted to their corresponding TF representa-
tion as

X(k,7)=S(k,7)H(k,7)+ N(k, 1), 2)
where k denotes the frequency bin index and 7 denotes the time-
frame index.

In order to recover the clean speech from the noisy speech
signal, a TF mask needs to be estimated and applied on the noisy
signal. For joint magnitude and phase estimation, a complex-
ratio mask (CRM) M (k, 7) can be estimated and applied on the
noisy speech X (k, ) to obtain the enhanced speech S(k, 7) as

S(k,7) = X (k,7) ® M(k,T), 3)

where ® represents the element-wise complex-valued multipli-
cation. The enhanced speech in the time-domain, 5(¢) is then
obtained by performing an inverse STFT (ISTFT) operation.

For training the deep neural network with focus on op-
timum reconstruction of speech, signal approximation (SA)
approach [21] can be used. It utilizes the loss between the
clean/target speech and the enhanced speech as

L = Loss(S(k,7),S(k,T)), “)

which is minimized so that the enhanced speech S(k,T)
matches as close as possible to the target speech S(k, 7).

3. Perceptually Weighted Loss

The squared error (SE) loss is one of the conventionally used
loss functions for training a neural network model for speech
enhancement. Specifically, for a given time-frame index with /N
number of frequency bins, it computes the difference between
the estimated and target spectrum of the speech as

SE(S,8) = (S(k) — S(k))*. 5)

k=1
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Figure 2: ATH-based frequency-importance weight waru (k)
corresponding to frequencies upto 24000 Hz.

In the above formulation, the error corresponding to each of the
frequency bins are given equal importance. However, it is well-
known from the domains of audio coding and psychoacoustic
principles that all frequencies are not perceptually equally im-
portant. The model could be trained such that more empha-
sis is given to frequency bins that are perceptually more rele-
vant. In order to incorporate such perceptual importance during
model training, the SE loss function in Eq. (5) is modified to as
a weighted squared error (WSE) loss as

WSE(S,§) = S w(k)(S(k) - §(k)%,  (©

k=1

where w(k) > 0 is the weight corresponding to each frequency
bin.

In [19], it was proposed to utilize the ATH for defining
the frequency-importance weight w(k) for training speech en-
hancement models. We extend the study in few aspects. To
begin with, we replace the simple multi-layer feed-forward neu-
ral networks used in [19] with one of the state-of-the-art neural
network architectures used for speech enhancement. In addi-
tion, we extend the application of ATH from wide-band speech
signals to full-band speech signals. The effect of frequency-
importance is more emphasized for a full-band spectrum due to
the increased bandwidth of operation.

3.1. ATH based frequency-importance weighting

The ATH is defined as the minimum sound pressure
level (in dB) required in a pure tone that an average human ear
with normal hearing can hear in a quiet environment in the ab-
sence of other sounds. The ATH is dependent on the frequency
of the tone. In [22], the ATH as a function of tone frequency f
is approximated as

2

_ _f
ATH(f) = 3.64 (54:) " — 6.5¢ 000 —22)
+ 1073 (L) )

We plot the ATH function defined above in Figure 1. It can be
seen that the ATH decreases from the low frequencies and has
the lowest value around 3000 Hz. Thereafter, it increases and
rises sharply for higher frequencies. It suggests that the sound
pressure level required to hear very low frequencies as well as
the higher frequencies is high and is less critical perceptually.
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Figure 3: Block diagram of the DPCRN model with the squared error loss Lppcrn and the ATH-based weighted loss LppPCRN sy -

As such, ATH can be used as a representative of frequency
importance since a lower value of ATH implies that the corre-
sponding frequency is easily audible by the humar ear and is
more critical perceptually. Therefore, it is easy to note that the
frequency-importance weights w(k) have an inverse relation-
ship with ATH. To estimate w(k) using the ATH function de-
fined in Eq. (7), we first compute the AT H (f) corresponding to
the center frequency of each frequency bin & for the bandwidth
of interest. We then normalize the obtained AT H (f) values
such that the maximum corresponds to unity. Denoting the nor-
malized values of ATH(f) as AT Hyorm/(f), the ATH-based
frequency importance weight w a7z (k) is then obtained as

WATH (k) =1+ (1 - ATH’ILU’V"!TL)’ (8)

where the weights are shifted such that the minimum weight
corresponds to unity as shown in Figure 2. It can be seen that
the perceptually less critical very low frequencies and the higher
frequencies are given a comparatively lower weighting. Us-
ing waru (k), the weighted loss in Eq. (6) can re-written as

WSEaru(S,8) => waru(k)(S(k) - S(k)*. )

4. Experiments
4.1. Datasets

We perform experiments on two separate datasets, namely
the VCTK dataset [23] and the 4™ DNS Challenge dataset [24].
A brief description of those datasets are given in the following.

4.1.1. VCTK dataset

The VCTK dataset consists of a separate training and test
dataset with utterances sampled at 48 kHz. The training set
consists of 11,572 pairs of clean and noisy utterances from 28
speakers. It consists of 10 different noise-types mixed at 4 dif-
ferent SNR conditions, thus resulting in a total of 40 noisy con-
ditions. The 10 different noise types include two synthetically
generated (speech-shaped noise and babble) noise types and
eight real noise types obtained from the DEMAND dataset [25].
The SNR levels for the training set are set as [0 dB, 5 dB, 10 dB,
15 dB]. This training set is 10 h in duration. We set aside 10%
of the training utterances as validation set. The test set consists

of 824 pairs of clean and noisy utterances from 2 unseen speak-
ers with 5 different noise types and 4 different SNR conditions,
ie., [2.5dB,7.5dB, 12.5 dB and 17.5 dB].

4.1.2. 4™ DNS Challenge dataset (DNS-4)

This dataset consists of clean speech samples belonging to six
different languages, including English, French, German, Ital-
ian, Russian and Spanish. It also consists of noise dataset which
consists of over 62,000 clips belonging to 150 audio classes, to-
taling to 181 h of noise samples. Both the speech and noise
clips are sampled at 48 kHz. From this dataset, we create 500 h
of clean and noisy speech pairs by setting the SNR from [-5 dB,
5 dB]. Similar to the previous experiment, we set aside 10% of
the training utterances as validation set. For the evaluation, we
use DNS-4 blind test set provided by the challenge organizers
which consists of 859 noisy speech utterances, each with 10 s
duration. Out of these, 638 test clips are recorded using a mo-
bile device while the rest are recorded using desktop PC/laptop.

4.2. Deep learning model for speech enhancement

We utilize one of the state-of-the-art speech enhancement
models, namely the dual-path convolution recurrent net-
work (DPCRN) [26] for training our models. It consists of
an encoder-decoder architecture with dual-path recurrent neural
network (DPRNN) block in between to model the frequency and
temporal dependencies in the spectrum. Skip connections are
used between the encoder and the decoder blocks. The DPCRN
model is trained using SNR loss as the time domain loss, while
a combination of squared error loss of the real spectrum, imag-
inary spectrum and magnitude spectrum is used as the TF do-
main loss. The DPCRN loss £ppcrn can be expressed as

Lppcry = f(s(t),5(t)) + log(SE(S,, S, )+
SE(S:,8:) + SE(ISI,151))  (10)
where f(s(t),35(t)) denotes the SNR loss. We modify the
squared loss of DPCRN to incorporate the ATH-based fre-
quency importance weighting defined in Eq. (9) as
LoperNary = f(5(t),5(t)) + log(WSEarm (S, Sr)+
WSEaru(Si,S:) + WSEaru(]S|,15])). (11)

The block diagram of the DPCRN model with the loss functions
Lppcry and LppcRN 4y 18 shown in Figure 3.
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Table 1: Performance of DPCRN model trained with LppcrN and LppcRN 4p 5 l0ss on the VCTK test set.

Model PESQ-WB | CSIG CBAK COVL | STOI | SI-SDR
Noisy 1.97 332 243 261 | 092 | 844

DPCRN (LppcrN) 2.57 378 323 317 | 093 | 1775
DPCRN (LD PCRN Azsr) 2.68 389 329 328 | 093 | 17.75

Table 2: Performance in PESQ-WB of DPCRN model trained with LppcrN and LppPCRN 45y loss at different SNR levels.

Model 5dB 0dB 5dB 10dB 15dB 20dB
Noisy 109 114 123 140 166  2.02
DPCRN (Lppcry) 119 137 163 192 223 255
DPCRN (Lppcrnary) 121 139 165 194 228  2.64

4.3. Model parameters

We keep the DPCRN model architecture similar to the origi-
nal architecture used in [26]. Since we use full-band speech,
the FFT length is set as 1200 with 50% overlap. The input
to the model is then the 601-dimensional complex spectrum.
For the encoder block, the number of filters in the convolu-
tional layers are set as (32,32,32,64,128). The kernel size and
the stride corresponding to these convolutional layers are set
as (5,2),(3,2),(3,2),(3,2),(3,2) and (2,1),(2,1),(1,1),(1,1),(1,1) in
frequency and temporal dimension. Two DPRNN modules are
stacked with BiLSTM layer to model frequency dimension and
LSTM layer to model temporal dimension each with a hid-
den dimension of 128. For optimization, we use Adam opti-
mizer [27] with a batch size of 8. The initial learning rate is set
as 0.001 and it is reduced by half if the validation loss does not
decrease after 5 epochs. Early stopping technique is used if the
validation loss does not improve for 10 epochs.

4.4. Evaluation metrics

For the experiments on the VCTK dataset, we use the percep-
tual evaluation of speech quality (PESQ-WB) using the wide-
band version recommended in ITU-T P.862.2 as an objective
quality measure [28]. We also use the composite measures,
namely CSIG for signal distortion, CBAK for noise distor-
tion evaluation, and COVL for overall quality evaluation [29].
In addition to these, we also employ the short-time objec-
tive intelligibility (STOI) [30] and the scale-invariant signal-to-
distortion ratio (SI-SDR) [31] objective quality measures. For
the experiments on the DNS-4 dataset, we use the local evalu-
ation of DNSMOS [32] provided by the challenge organizers.
The DNSMOS metric measures speech quality (SIG), back-
ground noise quality (BAK) and overall audio quality (OVRL).

5. Results and Analysis

We first consider the VCTK database for the studies. We
evaluate the performance of the DPCRN model trained us-
ing Lppcrn and LppcRN 41 loss functions on VCTK test
set with pre-mixed noisy utterances using PESQ-WB, CSIG,
CBAK, COVL, STOI, SI-SDR metrics as shown in Table 1. It
can be observed that the model trained using LppcRrN 47 10Ss
achieves a PESQ-WB score of 2.68, which is higher than 2.57
obtained using Lppcrn. Similarly, it achieves CSIG, CBAK,
COVL of 3.89, 3.29 and 3.28 compared to the scores of 3.78,
3.23 and 3.17 obtained using Lppcrn. In terms of the speech
intelligibility and distortion metrics, STOI and SI-SDR, both
models achieve comparable performance. The performance of
the noisy signal without using any speech enhancement in terms
of various metrics is also reported to show the impact of speech
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Table 3: Performance on DNS-4 blind test set.

Model SIG BAK OVRL
Noisy 3.23 240 2.25
NSNet2 3.12 3.84 2.79
DPCRN (LppcrN) 324 3.80 2.87
DPCRN (LpPCRNAry) 3.25 3.81 2.88

enhancement using both the methods, which is more evident
when using ATH-based loss.

We then conduct another study using VTCK test set, by re-
placing the pre-mixed noisy utterance with synthetically gen-
erated noisy utterance. Specifically, in order to evaluate the
performance of the trained models to unseen noise conditions,
we utilize the noise dataset from the DNS-4 dataset and mix
them with the clean speech utterances obtained from the VCTK
test dataset under different SNR conditions. For a given clean
speech clip, we randomly select a noise clip from the DNS-
4 noise dataset and mix them at [-5 dB, 0 dB, 5 dB, 10 dB,
15 dB, 20 dB] SNR. Therefore, for each SNR condition there
are 824 test utterances. The performance of the models trained
using the Lppcrn and LppcRN 4pp; 10ss functions are eval-
uated using the PESQ-WB metric and their results are reported
in Table 2. It can be observed that for all the SNR conditions,
the model trained using LppcrN 45 Produces a higher PESQ
score. This result is in contrast with the results obtained in [19],
where weighted loss showed improvement only under low SNR
conditions. Thereby, it highlights the use of DPCRN based
state-of-the-art model to utilize the ATH-based loss to increase
robustness against a wide range of conditions.

Finally, we consider the DNS-4 dataset for the studies and
the performance comparison of the DPCRN models trained us-
ing Lppcrn and LppcRN 4y 10ss is shown in Table 3. We
also compare them with the performance of a reference model
provided by the challenge organizers, named NSNet2 [33]. It
can be observed that the DPCRN model with ATH-based loss,
achieves higher SIG and OVRL scores using the DNSMOS met-
ric indicating its effectiveness.

6. Conclusions

In this paper, we demonstrate the use of perceptually motivated
loss for training full-band speech enhancement models. We re-
investigate the use of incorporating the ATH-based frequency-
importance weight to the squared error loss. The studies on
VCTK and DNS-4 dataset reveal that the proposed speech en-
chantment system using ATH-based loss performs better than
the system with conventional loss. In addition, it is also robust
to a varying range of SNR conditions showing applicability to-
wards real-world systems.
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