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Abstract
Recent state-of-the-art (SOTA) semi-supervised learning meth-
ods have shown great promise in improving sound event detec-
tion (SED) performance when the labeled data is scarce. Using
a combination of consistency regularization, pseudo-labeling,
and data augmentation techniques, the model predictions are
constrained to be noise invariant. The recently proposed Fix-
Match achieved SOTA results on SED tasks. However, it uses
a pre-defined constant threshold throughout the training pro-
cess to generate the pseudo-labels, thus failing to account for
the learning difficulties for each class and the model learning
stage. To address this issue, we propose a dynamic threshold-
ing method as an extension to FixMatch for generating pseudo-
labels based on the model’s predictions on weakly augmented
features. This method retains the generated pseudo-labels based
on the dynamic threshold value. The model is then trained to
predict the generated pseudo-label when fed with a strongly
augmented version of the same feature. On DCASE 2022 Task
4 2022 dataset, our method helped us in improving the SED sys-
tem performance by 34.22% compared to the baseline in terms
of polyphonic sound event detection score.
Index Terms: sound event detection, dynamic thresholding,
data augmentation, consistency regularization

1. Introduction
The human auditory system is highly capable of detecting and
segregating sound events to perceive changes in the surround-
ings. The sound event detection (SED) task automates the hu-
man auditory system to recognize sound events and mark their
corresponding occurrences. Sound events in the real-world tend
to have considerable overlap with each other, and the process of
recognizing the overlapping events is referred to as polyphonic
SED. It has a wide range of applications in real-world scenar-
ios like smart-home devices [1], audio surveillance [2, 3] and
monitoring biodiversity [4, 5].

Automatic SED systems are hindered by various chal-
lenges; some are dependent on the nature of sounds, while oth-
ers are related to the data collection and annotation process. The
recent advances in deep learning techniques have improved the
performance of SED systems. Deep learning methods typically
achieve their high performance by requiring a large amount of
labeled data, which can be easily obtained for text and image
applications compared to audio applications. The labeled data
for audio applications is associated with higher annotation costs
and is dependent on the subjective judgement of the annotator.
As an alternative, labeled data can be generated synthetically
from foreground and background samples, but it is still difficult
to obtain an ample amount of foreground samples.

To address the scarcity of labeled data, systems commonly
employ data augmentation (DA) techniques, consistency regu-
larization (CR) [6, 7, 8], and pseudo-labeling [9, 10]. The DA

methods artificially increase the amount as well as the diversity
of data and improve the system’s robustness by adding acoustic
variability. The CR methods in contrast train the model to give
consistent outputs for input and the perturbed variant. Whereas,
pseudo-labeling makes predictions on the unlabeled samples to
use the highly confident labels as training targets. The CR meth-
ods have a potential risk of confirmation bias when the loss is
heavily weighed in training [11], as the consistency loss out-
weighs the classification loss, preventing the learning of new
information. To reduce the risk, the mean-teacher (MT) [11] ap-
plies a consistency constraint in the model parameter space, as
the teacher model uses the exponential moving average (EMA)
weights of the student model. The recently proposed Fix-
Match [12] achieves a significant performance boost by com-
bining weak as well as strong DA and applying the CR crite-
rion. However, the FixMatch and other similar algorithms such
as pseudo-labeling, and unsupervised domain adaptation [13]
rely on a fixed constant threshold to compute the consistency
loss. The use of a fixed threshold may lead to the selection of
samples with wrong pseudo-labels and may not consider a few
classes with learning difficulties.

To improve on the existing algorithm, we take inspiration
from Dash [14] and incorporate a dynamic threshold in the MT
model to select the data during the training process and then ap-
ply CR to the weakly and strongly augmented data. The thresh-
old is gradually decreased over the number of iterations, adjust-
ing to the learning stage of the model and the learning difficulty
of some classes. The model initially learns using samples that
are easy to learn and progresses towards hard samples, introduc-
ing a natural curriculum. It adds up another loss function to MT
loss, to constrain the student model to give consistent predic-
tions for the weakly and strongly augmented samples. We note
that this technique requires no additional parameters or gradient
computation and can be applied to any CR algorithm.

The detection and classification of acoustic scenes and
events (DCASE) 2022 Task 4 focuses on semi-supervised learn-
ing (SSL) to utilize labeled and unlabeled data for developing
SED systems. The SED systems are targeted to provide the
event classes as well as the time localization of multiple events
occurring together. We consider the two-stage system [15] that
we developed for DCASE 2022 Task 4 challenge participation
by incorporating the proposed method of dynamic thresholding
with weak and strong augmentations in the second stage. We
compare the performances of the proposed dynamic threshold-
ing against FixMatch (constant threshold), single branches of
strong and weak augmentations, and the baseline for DCASE
2022 Task 4 to show its impact.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the baseline and the proposed extension to
FixMatch for the SED system. In Section 3, the specifics of
the experiments are described. The results and analysis are re-
ported in Section 4. Finally, Section 5 concludes our work.
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2. Sound Event Detection System
2.1. Baseline

The DCASE 2022 Task 4 baseline [16] utilizes the MT [11]
SSL method to effectively exploit large amounts of unlabeled
data. In the MT model, we average the model weights across
the training steps to produce a more accurate model than simply
using the final weights. The teacher model does not participate
in backpropagation; its weights are updated using the EMA of
the student model. The MT loss (LMT ) can be divided into two
parts: classification loss and consistency loss, given by Eq. (1),
where Lclass is the classification loss, Lcons is the consistency
loss, and λ is a fixed scalar hyperparameter that represents the
relative weight of the consistency loss. Again, the consistency
loss is made up of two components: clip-wise consistency and
frame-wise consistency, which compare the labels of both the
student model and the teacher model across the entire dataset.
We use the teacher’s predictions during the testing stage because
they are more likely to be correct.

LMT = Lclass + λLcons (1)

2.2. Proposed

In this section, we define the individual components on which
the FixMatch method is based before introducing the proposed
dynamic thresholding method (DTM) as an extension to Fix-
Match.

2.2.1. Consistency Regularization (CR)

CR [6, 7] is a key component in the recent SSL algorithms in-
cluding the MT model, it was first proposed in [7]. Consistency
training methods regularize model predictions so that they are
not affected by noise added to the input samples, making the
model more robust to small changes in the input samples. It is
achieved by minimizing the difference between the original in-
put prediction and the prediction of the perturbed version of the
same input. The methods differ in how and where the noise is
introduced.

2.2.2. Pseudo-labeling

Pseudo-labeling [9, 10] uses the model itself to make predic-
tions on the unlabeled samples and selects the samples where
the prediction is confident (above a threshold) [10]. This is a
type of entropy minimization, where the density of data points
at the decision boundaries is reduced. The advantage of pseudo-
labeling over CR is that no DA is required.

2.2.3. FixMatch

Recent advances in SSL have increased the complexity of learn-
ing algorithms, resulting in complicated loss terms and difficult-
to-tune hyperparameters. FixMatch defies this trend by propos-
ing an algorithm that can be easily integrated on top of other
algorithms. It employs both CR and pseudo-labeling to gen-
erate artificial labels. The generated label is produced on the
weakly augmented audio sample, which is then used as a target
in a standard cross-entropy loss function when the same model
is fed with a strongly augmented version of the same audio sam-
ple, introducing a form of CR as shown in Figure 1. Similar to
the method of pseudo-labeling, the method assigns a label to the
weakly augmented version if it crosses a fixed threshold. The

Weak Augmentation

Strong Augmentation

Unlabeled
Sample

Model

Model FixMatch Loss LFM

Prediction Pseudo-label

Figure 1: Schematic diagram of FixMatch.

FixMatch loss function LFM is given as:

LFM =
∑

xϵB

BCE(f(xstrong), f(xweak)) (2)

where f indicates the student model, xstrong represents the
strongly augmented sample, xweak represents the pseudo-label
generated from the weakly augmented sample and BCE repre-
sents the binary cross-entropy loss taken over a batch size of B.
The model’s predictions become more confident as the training
progresses.

2.2.4. Data Augmentation (DA)

DA is a common strategy to increase the amount of training
data. Such techniques are useful when building models with
limited training datasets. We extend FixMatch to SED and em-
ploy two types of augmentations, weak and strong, as in [17].
In this work, using a similar set of augmentation as in [18], we
further employed frame shift [18], mixup [19] and time mask-
ing [20] common to both strong and weak augmentations. Ta-
ble 1 shows the weak and strong augmentations utilized in our
experiments.

Table 1: The weak and strong augmentation used in our exper-
iments for SED.

Weak Augmentation Strong Augmentation

Filter augmentation
Filter augmentation
Frequency masking

Gaussian noise addition

Mixup randomly combines selected samples with a mixing
parameter, assisting in linear interpolation to improve the ro-
bustness of the model. The features and labels are shifted along
the time axis by frame shifting. Time masking masks consec-
utive time steps chosen from a uniform distribution, whereas
filter augmentation [18] applies random weights on random
frequency regions. Again, frequency masking [20] randomly
masks 16 of 128 mel bins and Gaussian noise addition helps to
generalize well to noisy data as well.

2.2.5. Dynamic Thresholding Method (DTM)

Inspired by Dash [14], we extend the idea of FixMatch and pro-
pose to integrate a dynamic threshold for the selection of sam-
ples into the MT model, as illustrated in Figure 2. The threshold
is decreased with the number of epochs. During the early stages
of learning, the model may blindly predict samples into certain
classes depending on the parameter initialization. To address
this issue, the threshold value is reduced after a fixed number of
warm-up epochs (w), allowing the model to learn the represen-
tations first, and ensuring that only highly confident labels are
selected in the early learning stage. Mathematically, we set the
dynamic threshold Th as a decreasing function of t (number of
epochs), given by:

Th(ρ) = Ce−α×phase (3)
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Figure 2: Schematic diagram of the proposed dynamic thresholding on FixMatch for MT model.

phase =
t

T
for t > w (4)

where C > 1 such that ρ is in between [0,1]. Here, the phase
is given by the ratio of t and the total number of epochs (T).
The decreasing threshold helps the model to learn progressively
from easy to difficult data for training. This addresses the differ-
ences in learning between sound events. We use this threshold
value to select the samples with predictions above the thresh-
old from the weakly augmented samples and use them as the
ground truth against the strongly augmented samples, achiev-
ing CR. The theoretical analysis in Dash also shows the conver-
gence guarantee of the proposed dynamic thresholding. In the
case of image classification, the model only had to classify into
one of the target images, but in sound event detection due to
its polyphonic behavior, multiple sound events can be present.
We modify FixMatch to select more than one sound event at the
same time, instead of taking the maximum across all the events.
The updated total loss function LTotal comprises:

LTotal = LMT + γLDTM (5)

where LMT is the mean-teacher loss as described in Sec-
tion 2.1, LDTM is the substitute for the updated FixMatch loss
(LFM ) described in Section 2.2.3 and γ is the weighing param-
eter. This method helps in stabilizing the training procedure, as
the self-consistent predictions on strong and weak augmentation
hold regardless of the correctness of the predictions.

3. Experimental Setup
The following subsections describe the experimental setup for
our studies.

3.1. Dataset

The DCASE 2022 Task 4 dataset utilized in this work is com-
posed of 10 seconds audio clips either taken from AudioSet [21]
or synthesized using Scaper to simulate a domestic environ-
ment. Table 2 shows the development dataset distribution.

3.2. Pre-processing

We resampled the audio clips at 16 kHz to a mono channel using
librosa. They are then divided into segments with a window size
of 2048 samples and a hop length of 256 samples for each suc-
ceeding frame. The short-time Fourier transform is applied to
the segmented waveforms to extract their spectrograms. Then,
log-mel spectrograms are produced by applying mel-filters in
the frequency domain spanning from 0 to 8 kHz, followed by a

Table 2: DCASE 2022 Task 4 dataset split for development set.

Clips Description
10,000 Synthetic strongly labeled data
3,470 Real strongly labeled data
1,578 Real weakly labeled data
14,412 In-domain unlabeled data
1,168 Real strongly labeled validation data

Strongly
Labeled

Weakly Labeled

Unlabeled

Weakified
Labels

FDY-CRNNPANNs

Strongly
Labeled

Weakly Labeled

Pseudo Weak

Stage-1 Stage-2

Figure 3: Proposed two-stage learning setup, with Stage-1 fo-
cusing on AT and Stage-2 focusing on SED.

logarithmic operation. Silence padding is used for clips that are
under 10 seconds.

3.3. Two-stage System (TSS) for SED

This section describes the details of our two-stage system (TSS)
shown in Figure 3, which we considered for the studies. Stage-
1 focuses on audio-tagging (AT) and Stage-2 uses the reliable
pseudo-labels generated by Stage-1 to improve SED. Further-
more, each stage makes use of MT, to exploit the unlabeled
training data. In both stages of the TSS, we use another SSL
method called interpolation consistency training (ICT) [6] in
addition to MT. The ICT replaces all input samples with in-
terpolated samples, assisting the model’s generalization ability.
We further extend Stage-2 of this TSS to utilize the proposed
DTM described in Section 2.2.5 for CR and apply the weak and
strong DA described in Section 2.2.4. We provide a detailed
description of the models used in each stage in the following.

3.3.1. Stage-1

As the feature extractor, we used convolutional neural net-
work (CNN)-14-based pre-trained audio neural networks
(PANNs) [22] to extract the embeddings. The embedding fea-
tures are fed into the bi-directional gated recurrent unit (Bi-
GRU) [23]. The PANNs-based embedding parameters are un-
frozen and trained. There are two layers of Bi-GRU with 1024
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hidden units following the feature extractor. Stage-1 is trained
utilizing a strongly labeled set converted into weak predictions
referred to as a weakified set, a weakly labeled set, and an un-
labeled set to improve the AT performance as demonstrated in
Figure 3. The Bi-GRU output is followed by a dense layer with
sigmoid activation to produce frame-level predictions, and the
aforementioned linear layer is multiplied by a dense layer with
a softmax activation function to produce clip-level predictions.

3.3.2. Stage-2

In this work, we used the AT system (Stage-1) to make pre-
dictions on the unlabeled set to use them as pseudo-weak la-
bels in Stage-2 training, as shown in Figure 3. In Stage-2, we
used frequency dynamic convolution recurrent neural network
(FDY-CRNN) [24] based frequency-dependent architecture to
replace the convolution recurrent neural network (CRNN) [16]
in the baseline. It is trained on a pseudo-weakly labeled set,
in addition to the strongly labeled set and the weakly labeled
set. We apply the strong and weak augmentations described in
Section 2.2.4. Using the weakly augmented features with high
confidence (above the threshold), we establish the ground truth
against the strongly augmented features. We reduce the thresh-
old exponentially with the number of epochs, as described in
Section 2.2.5. Thus, the total loss function (LTotal) demon-
strated in Figure 2 for this stage with γ = 1 for the LDTM and
with addition of loss for ICT (LICT ) defined in Section 3.3 is:

LTotal = LMT + LICT + LDTM (6)

3.4. Training Process

For all experiments, the batch size was set as 48 (1/4 strong set,
1/4 weak set, 1/2 unlabeled set). We used Adam optimizer [25]
with a learning rate of 0.001 and an exponential warm-up for the
first 50 epochs, increasing the weighing parameter λ defined in
Section 2.1 linearly in steps from 0 to 2, and then holding con-
stant at 2. A 90% training set and a 10% cross-validation set
were created from the weakly labeled set. Cross-validation is
performed on the 10% held-out weak subset and the additional
synthetic validation data. The system was built with PyTorch
Lightning and trained on NVIDIA Quadro RTX 5000 GPU. In
a total of 200 epochs, we used 50 as the warm-up epochs to
keep the threshold fixed at 0.9 and help the model learn using
highly confident predictions. We then reduced the threshold in
accordance with the method described in Section 2.2.5 with val-
ues C=1.094796 and α=0.783716 for the parameters, generated
by fitting the exponential curve between the empirically chosen
values 0.9 and 0.5 with the required decrease in 150 epochs. Af-
ter the warm-up, the threshold is dynamically decreased from
0.9 to 0.5 in the remaining epochs.

3.5. Evaluation Metric

We used the polyphonic sound event detection score
(PSDS) [26] as a performance metric in our studies. The PSDS
is more robust to the labeling subjectivity, leaving sufficient
room for interpretation of the temporal structure of both the
ground truth and the detections. It computes a single PSDS us-
ing polyphonic receiver operating characteristic curves, allow-
ing the comparison to be independent of the operating point. It
can be tailored to various applications, ensuring that the desired
user experience is met. As a result, it overcomes the limita-
tions of traditional collar-based event F-scores. The DCASE
2022 Task 4 employs two distinct scenarios that highlight dif-
ferent system properties. The first scenario (PSDS1) requires

Table 3: Performance comparison showing the importance of
the proposed method on the DCASE 2022 Task 4 validation set.

System PSDS1 PSDS2 PSDS1+PSDS2
Baseline: CRNN 0.351 0.552 0.903

Two-stage system (TSS) 0.472 0.721 1.193
TSS + Weak-DA 0.437 0.678 1.115

TSS + Strong-DA 0.420 0.647 1.067
TSS + FixMatch (ρ=0.5) 0.485 0.717 1.202
TSS + FixMatch (ρ=0.9) 0.480 0.723 1.203

Proposed: TSS + DTM-FixMatch 0.489 0.723 1.212

the system to respond quickly to event detection, focusing on
the temporal localization of the sound event. On the other hand,
the second scenario (PSDS2) focuses on preventing class con-
fusion rather than on reaction time.

4. Results and Analysis
We are first interested in comparing the performance of the
baseline with the TSS described in Section 3.3, followed by
the studies involving FixMatch with empirically chosen fixed
thresholds (0.5 and 0.9) and our proposed DTM on FixMatch.
For ablation studies, we also consider the single weak and
strong DA branches employed in Stage-2 of TSS without CR
and pseudo-labeling demonstrated in Figure 2. We also em-
ployed some existing post-processing techniques to further as-
sess the efficacy of the proposed method and conduct fair
comparisons with the current state-of-the-art (SOTA). We used
adaptive post-processing [27] in both stages of the TSS, using
a different median filter window size for each event category.
During inference, we set the temperature parameter [28] in the
sigmoid function to 2.1.

Table 3 shows a comparison of all the systems stated above
along with the ablation studies. We observe that the TSS system
used in this work is performing much better than the baseline,
proving it as one of the SOTA systems. We further find that
only introducing either weak or strong augmentations on TSS
does not help to improve the results; but considering them to-
gether in FixMatch improves the performance due to consider-
ation of CR with pseudo-labeling, which is more evident when
a fixed threshold of 0.9 is considered. Further, our proposed
DTM that dynamically varies the threshold with the number of
epochs on FixMatch outperforms the systems with fixed thresh-
olds. Compared to the baseline CRNN, the proposed DTM-
FixMatch achieves a 34.22% noticeable improvement in terms
of the total PSDS (PSDS1+PSDS2), which depicts the effec-
tiveness of the proposed system.

5. Conclusion
In this work, we proposed a DTM as an extension to FixMatch
for the SED system. The method employs a combination of
pseudo-labeling and CR, as well as two types of data augmen-
tations: strong and weak. It generates an artificial label using
the model’s predictions that are confident (above a threshold)
on a weakly augmented version of the sample. The generated
pseudo-labels are used to enforce cross-entropy loss against the
model’s prediction for the strongly augmented version. The
threshold is exponentially decreased with the number of epochs
after a few warm-up epochs. The studies on the DCASE 2022
Task 4 dataset reveal that the proposed dynamic thresholding on
FixMatch improved the performance of FixMatch with a fixed
threshold, as well as outperformed the DCASE 2022 Task 4
baseline by a large margin.
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