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Abstract

Speech synthesis has been successfully exploited for mapping
from text sequence to speech waveform where high-resource
languages have been well studied and learned from a large
amount of text-speech paired data in public-domain corpora.
However, developing speech synthesis under low-resource lan-
guages is challenging for speech communication in local re-
gions since the collection of training data is expensive. In par-
ticular, the speaker-aware speech generation under low-resource
settings is crucial in real world. Such a problem is increasingly
difficult in case of very limited speaker-specific data. This paper
presents a speaker-aware speech synthesis under low-resource
settings based on an encoder-decoder framework by using trans-
former. Knowledge transfer is performed by incorporating a
speaker-aware embedding through first learning a pretrained
transformer from multi-speaker data of a low-populated spoken
language and then fine-tuning the transformer to a target speaker
with very limited speaker-specific embeddings. Experiments on
low-resource Taiwanese speech synthesis are evaluated to show
the merit of speaker-aware transformer in terms of Mel cepstral
distortion and mean opinion score.

Index Terms: low-resource speech synthesis, speaker-aware
embedding, encoder-decoder model, transformer

1. Introduction

Text-to-speech (TTS) [1, 2] is known as a research topic on se-
quence mapping which transforms a natural sentence in source
domain into a speech utterance in target domain [3] where the
technical data in two domains are presented in different styles.
TTS has been deeply trained and successfully applied in various
domain such as chatbots and intelligent assistants, e.g. Apple’s
Siri and Amazon’s Alexa. The trained TTS is feasible to gen-
erate a human-like voice by using a sophisticated deep neural
network in case that sufficient voice recordings from a speaker
or multiple speakers are available [4]. Such a case is gener-
ally possible for high-resource languages since the text-speech
paired data from multiple speakers have been abundant and ac-
cessible in public domain. Nevertheless, TTS for a target male
or female speaker still requires a huge amount of paired data
for supervised learning so that all possible acoustic contents are
covered and learned. Basically, this is a difficult task when a
budget limit for data collection is taken into account.

Recently, the trend of TTS system tends to build a model
from multiple speakers [5, 6, 7]. There are several advantages
of learning a TTS from multiple speakers instead of a single
speaker. First, the learned TTS is able to represent various
characteristics from different speakers based their speaker em-
beddings. This scheme provides the flexibility of synthesiz-
ing different speaker voices covering a wide range of acoustic
events. Also, given by the well-trained multi-speaker model as
an initialization, it is more likely to estimate TTS for an unseen
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speaker through model fine-tuning. Second, the requirement
of voice recordings from an individual speaker can be relaxed.
This requirement is significantly reduced when compared with
the traditional TTS which usually requires training speech as
long as 20 hours. Each speaker in multi-speaker TTS only
needs several hours of speech recordings. Total length of mul-
tiple speakers is still much longer than that of single speaker.
Third, when the transcriptions from different speakers are dis-
tinct, the coverage of sound events is accordingly enhanced in
multi-speaker TTS. The issue of out-of-vocabulary or unseen
acoustic events is mitigated. Following the advantages of multi-
speaker TTS, a common way to synthesize the voice for a target
speaker is to first construct a pretrained model and then adapt it
to a customer voice using the limited data from the customer. A
recent example was presented to develop a so-called LibriTTS
[8] which was learned as a multi-speaker TTS in English by us-
ing the pretrained model learned from LibriSpeech speech cor-
pus consisting of 2456 speakers. In addition, a similar idea was
exploited for voice conversion which is another form of domain
mapping for voices from a source speaker to a target speaker.
Producing a target speaker’s voice was implemented by cascad-
ing automatic speech recognition (ASR) and TTS [9]. ASR was
applied to find text from source speaker’s voice and then TTS
was used to map this source text to a target speaker’s voice [10].

This paper presents a new speaker-adaptive multi-speaker
TTS where the challenges of low-resource language and limited
adaptation data are tackled. First, a pretrained TTS based on an
encoder-decoder framework using transformer is learned from
text-speech paired data of multiple speakers of a low-populated
language. The styles, accents, ages and genders from differ-
ent speakers are accommodated in the model. Second, the TTS
transformer is fine-tuned for an unseen target speaker by incor-
porating utterance-based speaker features. The speaking style
is then generalized from multi-speaker model to match that of
a target speaker for various text transcriptions. This study is
investigated by exploring a low-resource TTS in Taiwanese, a
local spoken language in Taiwan, where a limited amount of
training samples from multiple native speakers are collected.
In particular, a speaker-aware voice conversion is implemented
and evaluated for Taiwanese TTS where a customer with only
a few hours of speech recordings is provided. A number of ex-
periments are assessed to show the effectiveness of this method.

2. Background survey
2.1. Voice conversion

Voice conversion is recognized as a domain mapping for voices
which aims to transform the voice of a source speaker into
that of a target speaker. A naive way to handle this issue is
to use the cascaded model based on ASR and TTS, a base-
line system in the Voice Conversion Challenge 2020 (http:
//www.vc-challenge.org/). However, such a method



was inefficient since it required two processing components and
one fine-tuning component so as to convert the voices into a tar-
get speaker. In case of using encoder-decoder framework, there
would be two types of encoder, namely speaker encoder and
content encoder. These two encoders were used to disentan-
gle the speaker features and content features. These features
were then used as the inputs to a TTS decoder to reconstruct the
voices of a target speaker. Therefore, if the voices or features
of a target speaker could be used as the inputs to the speaker
encoder and combined with the content features from source
speaker, the converted voices to a new speaker with another
speaking style could be generated.

2.2. Text-to-speech transformer

Transformer [11] is formed as an encoder-decoder architecture
driven by self attention as well as cross attention which work
successfully for sequential learning in a wide range of applica-
tions. Self attention is operated within individual input and out-
put sequences in encoder and decoder, respectively, while cross
attention is fulfilled to attend output sequence from the attended
input sequence. Transformer has achieved state-of-the-art per-
formance in many applications in natural language processing
areas. For the application on TTS, the transformer-based TTS
[1] was proposed as a variant of transformer where the network
architecture for TTS was adjusted from the original transformer
designed for machine translation and ASR [12]. The power
of TTS transformer was inherited from that of original trans-
former. This transformer did improve state-of-the-art model
based on Tacotron 2 [2]. In addition, the transformer-based
TTS has become the mainstream method [13], such as the vari-
ants of Fastspeech [14, 15] and Adaspeech [7, 16]. This study
presents a speaker-aware voice conversion based on a modern
transformer so as to build TTS for a low-populated language.

3. Speaker-Aware Low-Resource TTS

Speech synthesis under low-resource settings is challenging but
impacting because the data collection is difficult while the lan-
guage heritage is crucial. Taiwanese (or specifically Taiwanese
Hokkien) is a local spoken language with a variety of dialects
where the percentage of home use in Taiwan is 81.9%. Differ-
ent from Mandarin, English, and the other languages with large
population, Taiwanese is viewed as a low-populated language
where collection of a large speech corpus is expensive.

3.1. Spoken language processing in Taiwanese

This paper deals with speech synthesis in Taiwanese. The writ-
ten language of Taiwanese is typically Chinese. The spoken
sound in Taiwanese accent can be transcribed by a unique pro-
nunciation based on Taiwanese Language Phonetic Alphabet
(TLPA) developed by the Taiwan Language and Literature Soci-
ety. TLPA is a phonetic symbol system, which mainly consists
of Latin letters. Taiwanese is a tonal language where there are
nine tones, each of which corresponds to a different Latin char-
acter code. However, language data should be represented when
stored and operated. The American Standard Code for Informa-
tion Interchange (ASCII) is a computer encoding system based
on Latin alphabets. For computer processing in Taiwanese, this
work adopts another encoding system called Taiwanese Lan-
guage (TL) Pinyin, where tones are denoted by numbers. A
comparison of phonetic transcription in Latin letter and TL
Pinyin is shown in Table 1 where only seven tones are shown.
There are three ways to deal with the other special tones. First,

some dialects have a sixth tone, e.g. Latin representation of
sixth tone of o is 0. Second, some dialects have ninth tones, e.g.
Latin representation of ninth tone of o is §. Third, the symbol
“~” is marked between heavy and light sounds. For example,
Latin representation of the word “passport” is “hoo tsiauh”, it
can be converted to “hoo7-tsiau3” in TL Pinyin.

Table 1: Comparison of Latin tokens and TL Pinyin tokens.

Phonetic
Latin tong tdng tong tok tong tong tok
TL tongl tong2 tong3 tok4 tongS tong7 tok8

In implementation of TTS conversion, a text string is basi-
cally translated into a phoneme sequence by a text-to-phoneme
converter so that the sound synthesis with a single pronunciation
can be obtained. For Taiwanese speech synthesis, the first step
is to convert the sequence of Chinese characters into a phone se-
quence in TL Pinyin. The resulting sentence is then converted
to TL tokens, e.g. TL sentence “il iau2-be7 lai5” (He hasn’t ar-
rived yet) can be pronounced by a character string “i 1 (space)
iau?2 (space) be 7 (space) l ai5”. It is because there doesn’t
exist a formal rule or mapping table between TL Pinyin and
phoneme symbol. Taiwanese TTS can be implemented through
26 English characters to carry out the pronunciation for Tai-
wanese speech. Such a model is only learned with a pronuncia-
tion model over 26 English letters and 9 tones.
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Figure 1: Speaker-aware low-resource speech synthesis using
transformer.  Outputs of encoder from text data of multiple
speakers are cascaded with x-vectors of a target speaker to syn-
thesize the converted speech for a target speaker.

3.2. Speaker embedding and awareness

This paper proposes a speaker-aware low-resource speech syn-
thesis where the system overview is illustrated in Figure 1. This
system is pretrained and fine-tuned as a speaker adaptive Tai-
wanese TTS based on a new transformer where the architecture
is combined with a speaker module. A multi-speaker training is
performed to assure the quality of synthesized speech in pres-
ence of low-resource language given with a limited amount of
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training utterances from multiple speakers as well as a target
speaker. Speaker awareness is implemented by incorporating a
speaker embedding into a multi-speaker TTS. This embedding
contains different styles of voices. In the implementation, the x-
vector [17, 18], which is popular as a single vector to represent
speaker characteristics within an utterance, is introduced and
cascaded with the output vector of transformer encoder as well
as the input vector of transformer encoder. The first cascaded
vector is used to perform cross attention between input text and
output speech while the second cascaded vector is adopted as
the input vector to run the masked multihead attention. The
speaker module is jointly trained with TTS module under a spe-
cialized transformer. In the preprocessing of x-vectors, an entire
speech signal is first sliced and then the spectral features of in-
dividual slices are calculated by a deep neural network (DNN)
with data augmentation as detailed in [17]. Empirically, the
speaker embeddings based on i-vector [19, 20] and d-vector
[21] can be also taken into account to carry out a speaker-aware
low-resource TTS in Taiwanese.

3.3. Learning for low-resource speech synthesis

There are two stages in the training procedure as illustrated in
Algorithm 1 including pretraining stage and fine-tuning stage
where both stages need to calculate the spectral feature for in-
put and output strings {x,y}. The Mel-scaled spectrogram is
calculated find filter bank features for these two strings. A kind
of transfer learning is implemented to build an adaptive multi-
speaker transformer. There are two sets of paired sequences
of word tokens and speech frames where the total length of
the utterances of each speaker in both data sets is limited.
Transfer learning is performed to transfer the pretrained trans-
former, learned from paired data {xs, y} in presence of multi-
ple speakers in source domain €25, to the fine-tuned transformer,
learned from paired data {x;,y:} of a target speaker in target
domain ;. A mapping function f : Qs — 2 is learned for
voice conversion in a speaker-aware low-resource TTS.

In the learning procedure, the embeddings of word or char-
acter tokens x = {x, }2=, are first transformed to find an in-
termediate feature representation via an encoder with N lay-
ers where each layer consists of a multihead self attention net-
work [22] and a feedforward network (FFN). The speaker em-
bedding based on x-vector is added as a speaker aware repre-
sentation before sending it to the decoder, and the speaker em-
bedding is fixed during the training procedure. Finally, the de-
coder performs a multihead cross attention given with the in-
puts from speaker aware features as well as the target speech
features which are calculated from the spectra of a speech utter-
ance y = {yn}:il via multihead self attention with causal
mask. Accordingly, the outputs from N-layer decoder with
masked self attention, cross attention and FFN in each layer
are used to find the converted voice y = {y,} ., where the
vocoder based on the pretrained parallel WaveGAN [23] (a sim-
ple and effective parallel waveform generation method based
on a generative adversarial network) is employed to produce
the speech waveform. A multi-speaker encoder-decoder atten-
tion network combined with a target speaker module is trained.
Typically, cross attention is adopted to precisely align between
the sequences of word tokens x and speech spectra y. With a
reliable alignment, it is likely to assure producing the speech
waveform with correct duration. In the fine-tuning stage, the
model parameters are first initialized with the pretrained model
with weights 6. The number of learning epochs 7 for fine-
tuning a model to a target speaker is reduced when compared

with that 7, in pretraining stage. The training objective here
is the same as that in TTS using Tacotron 2 [2]. The objec-
tive consists of the mean squared error (MSE) loss (or equiv-
alently £2 1088) fmse = % Z:il (Yn — ?n)2 and the ¢; loss

Y

I T%, Z:yzl |¥rn — ¥n| where ¥y, denotes the predicted
spectrogram and y,, denotes the ground-truth spectrogram. Fur-
thermore, the decoder needs to predict the token of stopping in
a token sequence. If the stop token is true, the model plans to
stop decoding. There is a binary cross entropy (BCE) loss is
measured by loce = Ystop * log Ypred + (1 - YStop) . log (1 - Ypred)
where yop denotes the label of stop token, and ypreq denotes the
prediction of stop token. The training objective is the combina-
tion of ¢1 loss, MSE loss and BCE loss as £ £ lmee + €1 + Coce.
Speaker-aware transformer parameter ¢ is first pretrained and
then fine-tuned.

Algorithm 1 Pretraining and fine-tuning for low-resource
speech synthesis

Input: source data {x,y}, target data {x¢,y+}, hyperpa-
rameters Tp, Tf
Output: Fine-tuned model parameter ¢
Pretraining stage (Xs,ys, Tp)
initialize model parameter
while epoch < 7, do
model generates ¥ from x;
compute loss £ with y, and y s
update the model parameter
Fine-tuning stage (X¢, ¥+, 0, 75)
initialize model parameter: ¢ < 0
while epoch < 7; do
model generates y; from x;
compute loss £ with y; and y;

update the model parameter ¢
return ¢

4. Experiments
4.1. Experimental setups

This study conducted the experiments on the Taiwanese across
Taiwan (TAT) corpus [24] and the Suisiann dataset (https://
suisiann-dataset.ithuan.tw/). TAT provided 100
hours of speech utterances from 100 speakers which contained
different genders and accents. Suisiann (means the beautiful
sound) is a public dataset which included roughly 4 hours of
Taiwanese speech with only one female speaker. The sam-
pling rate of speech waveform was adjusted to 16KHz for both
datasets which was fitted to the setting of Kaldi [25] for fea-
ture extraction when using the ESPnet [26]. Furthermore, Kaldi
library was used to trim the silence segments at the beginning
and end of an utterance. This scheme would refrain the model
to be affected when aligning between text sentence and speech
waveform. For text processing, the individual TL tokens with
numbers were seen as the characters which were encoded as the
inputs to the learned model.

In the implementation, the transformer was trained via ES-
Pnet with six transformer blocks in both encoder and decoder.
Number of attention heads was set as 4 and the size of hid-
den features was 384. The speaker embedding using x-vector
with a dimension of 512 was calculated. A personal computer,
equipped by Quadro RTX 6000 GPU, was used to carry out the
proposed method where 20 hours of training utterances were
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utilized. The hyperparameters for the number of epochs in
running the pretrained and fine-tuned models were set as 200
and 30, respectively. The length of training time was roughly
30 minutes. The Adam optimizer was used with parameters
B1 = 0.9, B2 = 0.98, ¢ = 10~? which were defined in [27]. In
the inference time, the pretrained parallel Wave-GAN [23] was
used as the vocoder to synthesize speech waveform.

6
Input

Output

5 10 15 20 25 30 35 40
Input

Figure 2: Comparison of cross-attention maps for ablation
study. Left-hand-side sub-figures are the results of three Tai-
wanese utterances from the direct-trained TTS without speaker
awareness, and the right-hand-side sub-figures are the corre-
sponding results from speaker-aware TTS.

4.2. Experimental results
4.2.1. Ablation study on speaker-aware TTS

First, the ablation study on low-resource TTS with and with-
out speaker-aware knowledge transfer is conducted. The com-
parison is made by showing the cross-attention maps between
encoder input and decoder output of a transformer. Figure 2
shows the attention maps of direct-trained TTS without speaker
awareness (left-hand-side) and speaker-aware TTS (right-hand-
side) in presence of three different Taiwanese utterances. The
alignment result between input and output sequences based on
the attention weights reveals that the speaker-aware embedding
in transformer does improve the prediction of duration informa-
tion of the synthesized voices in sequence mapping.

Table 2:  Comparison of MCD and RMSLE of synthesized
speech under various data amounts and speaker embeddings.

Fine-tuning data amount MCD RMSLE
100 utters with i-vector 9.52+091 | 0.54 £0.27
100 utters with x-vector 9.65+1.02 | 0.51 +£0.28
300 utters with i-vector 8.68+1.36 | 0.33+0.22
300 utters with x-vector 8.59+0.72 | 0.33+£0.16
500 utters with i-vector 8.76 £1.16 | 0.28 £ 0.20
500 utters with x-vector 8.76 £1.26 0.3+0.15

4.2.2. Evaluation on data amount and speaker embedding

In objective evaluation, the Mel cepstral distortion
(MCD) [28] and the root mean squared logarithmic er-
ror  (RMSLE) (https://www.kaggle.com/code/
marknagelberg/rmsle-function/script) of syn-
thesized speech are measured. For both measures, the lower

the better. The effects of data amount and speaker embedding
are evaluated for low-resource Taiwanese TTS. The number of
fine-tuning utterances from a target speaker is varied from 100
to 300 and 500 utterances where the length of total utterances is
3.67, 12.06 and 22.56 minutes, respectively. On the other hand,
the speaker-aware embedding for low-resource TTS using
i-vector [19] and x-vector [17] is investigated by comparing
MCD and RMSLE of the corresponding synthesized speech.
As shown in Table 2, the lowest MCD is obtained by using
300 adaptation utterances where x-vectors are applied while
the lowest RMSLE is achieved by using 500 utterances with
i-vectors. The results with one standard deviation are shown.
Basically, MCD is a popular measure in speech synthesis. In
terms of MCD, the length of adaptation utterances with 12.06
minutes is sufficient. The results of i-vector and x-vector are
comparable in this comparison.

Table 3: Comparison of MCD and MOS of synthesized speech
without and with speaker awareness for fine-tuned model.

Method MCD MOS
ground-truth speech N/A 4.90 +0.09
TTS w/o speaker awareness | 12.62+1.63 | 1.62+0.34
speaker-aware TTS 8.59+0.72 | 3.32+0.45

4.2.3. Evaluation on human judgement

Table 3 further shows the ablation study on comparing MCD of
Taiwanese TTS without and with speaker awareness fine fine-
tuned model. This comparison reveals significant improvement
by fine-tuning the model with speaker-aware embedding. The
improvement is still clear even with adaptation utterances as
limited as 3.67 minutes. In addition, the subjective evaluation
of synthesized speech in terms of mean opinion score (MOS)
with 95% confidence with score between 1 and 5 is displayed in
the comparison. There are five persons evolved in human eval-
uation. Ten test utterances are evaluated. MOS of ground-truth
speech is included. As shown in Table 3, the result of MOS
is substantially improved by introducing the proposed speaker-
aware TTS in transformer. This paper also provided the synthe-
sized speech data for listening test .

5. Conclusions

This paper presented a speaker-aware approach to low-resource
Taiwanese text-to-speech. A new encoder-decoder framework
based on transformer was developed. A voice conversion
scheme in an adaptive TTS was incorporated by combining
the encoder outputs from multi-speaker voices and the speaker-
specific embeddings from low-resource enrollment utterances.
This combination passed through a decoder to generate the con-
verted voice with a vocoder. The experimental results showed
that the speaker-aware knowledge was merged to substantially
enhance the voice quality. Speaker-adaptive speech synthesis
was implemented to achieve the desirable performance with as
limited as 12.06 minutes. Future studies could be extended to
further fine-tune the results with the gender information and ad-
ditionally control the prosody of synthesizer with the features
of pitch, energy and duration [29].

Synthesized speech samples are provided at https:
//nycu-mllab.github.io/Low-Resource_Speech_
Synthesis_with_Speaker—-Aware_Embedding/
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